Cryptogr phy and elliptic corves : a 25-year «I ve» (?) story

Marc Girault (formerly with France Telecom/Orange Labs R&D)

INDOCRYPT Conference, **New Delhi**, 13-16 December 2009

Many thanks to

Bimal Roy and Nicolas Sendrier (and all the program committee) for this invitation

The organization committee for kind arrangements and organization

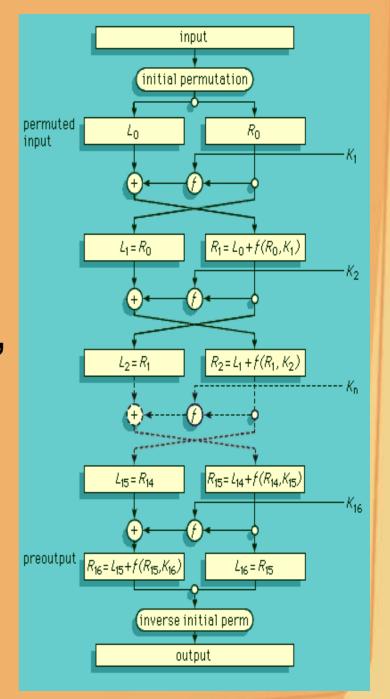
Contents

- 1. What looks like cryptology in 1985?
- 2. The irruption of elliptic curves (1985-1989)
- 3. **ECC** incubation period (1990-1999)
- 4. The pairing tornado (2000-2009)
- 5. Applications
- 6. Experts' opinions
- 7. Conclusion (?)

1. What looks like **cryptology** in 1985 ?

80's : effervescence years

- DES and RSA recent and undisputed crypto-stars
- One new scheme (and nearly one broken...) per day
- Birth of IACR (International Association for Cryptologic Research)

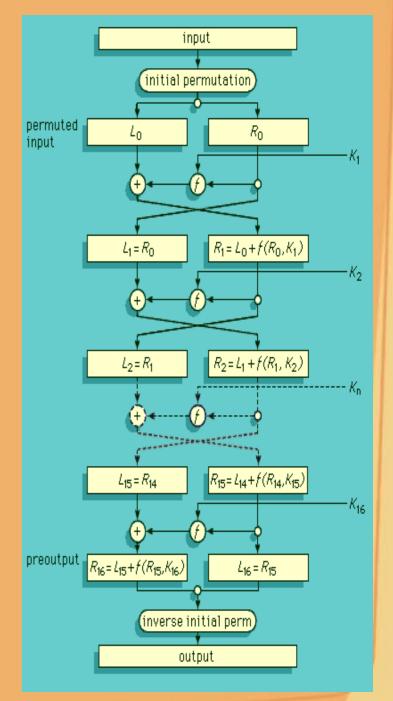

More precisely, on 1st of January 1985...

DES: the glory (1)

 Sound foundations (Luby-Rackoff)

Exhaustive research
 believed to be "unfeasible"

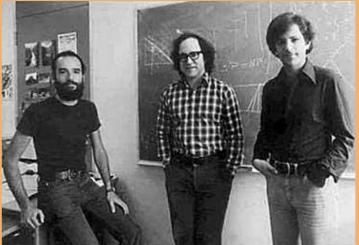
 Building block for hashing and MAC-ing
 (Matyas-Meyer, Davies-Price)



DES: the glory (2)

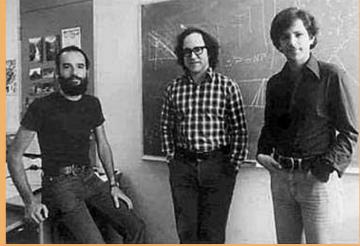
- Widely implemented and used
 - Software and hardware
 - Banks, credit cards...

Neither theoretical nor practical concurrent


LFSR not trustworthy

RSA : towards the glory (1)

Factoring algorithms not too
 destructive (quadratic sieve, Pollard, p–1, p+1,...)


→ 320 bits are enough

- Many weaknesses are pointed out however :
 - Not only they can be avoided...
 - ...but some of them can even be turned into advantages (ex. blind signatures)

RSA : towards the glory (2)

- The main concurrent (knapsack,
 Merkle-Hellman) has
 been (almost) fully
 broken
 - Shamir

- then Brickell, Odlyzko,...
- first and brilliant demonstration of LLL devastating effects in crypto

RSA : towards the glory (3)

 The least significant bit(s) is (are)
 Secure (Abadi-Chor-Goldreich-Goldwasser Hastad-Schnorr)

Towards massive usage

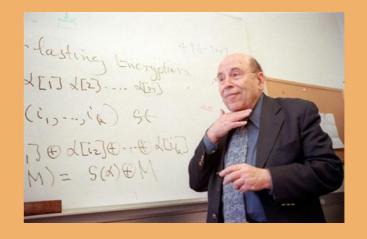
- reasonably efficient implementations
- real applications (ex. static authentication of bank cards in France)

Discrete logarithm

DL algorithms not too destructive (index-calculus,...)

→ 320 bits are enough

Diffie-Hellman very popular



EI-Gamal schemes are rather considered as alternatives of RSA

Other (factoring-based)

Encryption and Signature

- Rabin (exponent 2 RSA's variant)
- Williams' variants

Signature

- OSS (Ong-Schnorr-Shamir, broken)
- E-Sign (Okamoto-Shiraishi, broken with exponents 2 and 3)
- Shamir (identity-based)

Other (quantum-related)

Code – based encryption

- McEliece
- First (alive) PQ-algorithm !

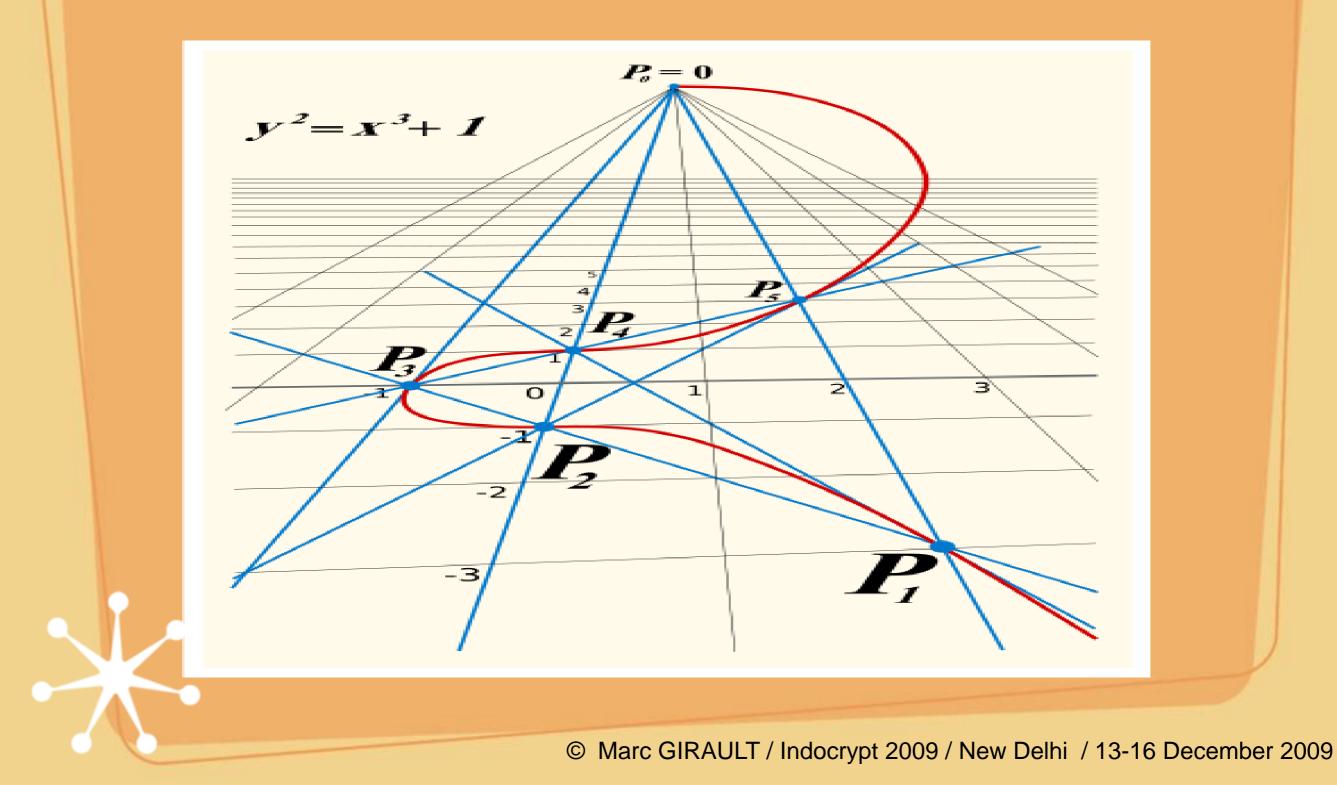
Quantum – based key exchange

- Theory (Bennett-Brassard, Crépeau)
- Practice : not yet

Foundations

- Well advanced (Goldwasser, Goldreich, Levin, Micali, Yao,...)
 - One-way (trapdoor) functions
 - Hardcore bits
 - Indistinguishability
 - Probabilistic encipherment
 - Semantic security
 - PRNG (Blum-Blum-Shub) and PRNF
 - Oblivious transfer
 - Signatures : next year (Goldwasser-Micali-Rivest)

1985 : the **best** millenium since 1977 ?


Two major breakthroughs

- **Zero-knowledge** (Goldwasser-Micali-Rackoff)
- Elliptic curves for cryptanalysis
 (H.W. Lenstra) and cryptography (V. Miller, Koblitz)

Both worlds meet the year after Primality algorithm (Goldwasser-Kilian)

2. The irruption of elliptic curves (1985 - 1989)

What's an "elliptic curve" ?

ECM (1)

On 14 February 1985, H.W. Lenstra, Jr. sends to Henri Cohen :

Cher Henri,

Best regards Hendrik

ELLIPTIC CURVE FACTORIZATION

This is a new integer factoring method with running time $L^{1+o(1)}$. It detects small prime factors first.

It is derived from the Pollard p -1-method by replacing the multiplicative group by a random elliptic curve.

(...)

ECM (2)

On 29 June 1985, John M. Pollard sends to Don Hunter :

Dear Don,

Here are some opinions about the 'elliptic curve' (EC) method. (...)

The relationship with p+/-1 is as follows. In 'p-1', we get q=p-1 always, so there is no point in making more than one attempt.(...)But in EC, we are likely to get different q each time.(...)

A possible line now is that we do not bother with ANY conditions in RSA ! (I predict that there will be one school that maintains this... I am not sure whether I belong).(...) With compliments, John M. Pollard

ECM (3)

- Lenstra's paper is published at Computational Number
 Theory Conference, Arcata (CA), August 1985
- Along with Montgomery's factorization of the 74-digit number (5¹⁰⁶+1)/2 in two factors, one close to 10²²

Today the record is 10³⁸¹+1, whose smallest prime factor is 67 digits or 222 bits (Dodson, August 2006)

At CRYPTO'85 Conference, V. Miller suggests to use Diffie-Hellman key agreement protocol with elliptic curves

ECC is born !!!

Koblitz independently has the same idea while staying in Russia (published in **1987**)

- In 1988, he extends it to Jacobians of Hyper-Elliptic Curves
 - Crypto'88 then JoC, Vol.1, N°3, 1989 (the first paper about ECC in this revue)

In **1991**, he will propose practical curves for implementation (known as Koblitz curves)

Many people are skeptical

- « Too complicated ! »
- (variant) « Too much structure ! »
- Addition of points not faster than modular exponentation
- No EC-RSA

As a result

 No related paper at 1986 and 1987 at Eurocrypt or Crypto conference

Even later

- No treatment of ECC in 2nd edition of Schneier's «Applied cryptography» (1996 !)
- The same in «Handbook of Applied Cryptography» (1997 !)

Nonetheless :

As soon as **1985**, Agnew, Mullin and Vanstone are visionary and fund

which today holds 450 patents !!!

Besides, still in 1985

 Schoof discovers a polynomial algorithm for counting points of E(F_q)

Complexity is initially in O(log^{5+ε} q)

Primality (1)

- Before 1984, no efficient primality algorithm is known (only compositeness algorithms) and nobody knows if there is
- In 1984, Cohen and Lenstra had proposed the efficient but non-polynomial *Jacobi sums* algorithm

In **1986**, G. Miller comes with a polynomial (under RH) but non-efficient algorithm

Primality (2)

 In 1986, by using elliptic curves, Goldwasser and Kilian exhibit a probabilistic algorithm which is both efficient and polynomial (under a reasonable conjecture)

In **1986** Adleman and Huang skip the conjecture by working on Jacobians of hyper-elliptic curves of genus 2 :

PRIMES is in RP !

Note also...

1986 : EC used for PRNG (Kaliski)
1987 : Unified addition law (Montgomery)
1989 : First chip implementation (Agnew-Mullin-Vanstone)

3. **ECC** incubation period (1990 - 1999)

© Marc GIRAULT / Indocrypt 2009 / New Delhi / 13-16 December 2009

90's are (for cryptology in general) years of *maturity*

90's : Maturity years (1)

Cryptanalysts refine their tools

- Differential (Biham-Shamir) and linear (Gilbert, Matsui) cryptanalysis
- NFS algorithm for factoring and DL (BLP after Pollard)
- Flaws in modes of operation (Preneel-Van Orschoot)
- Fault and side-channel attacks (Kocher)
- And plenty of others... (Coppersmith)

But cryptographers too !

Provable security (Bellare – Rogaway, Pointcheval – Stern)

90's : Maturity years (2)

Symmetric crypto

- Many new schemes (FEAL, IDEA, RC family,...)
- Some of them (FEAL,...) do not resist the differential cryptanalysis...nor the linear one !
- DES does resist and dies in its bed
- Hash (MD family, SHA-1,...) and MAC
- Design criteria made rigorous : AES competition is rough

90's : Maturity years (3)

Asymmetric crypto (traditional)

- Efficient implementations (RSA in a smart card !)
- DSA (from NIST) fails in superseding RSA
- RSA and DH conquer the Net
- Zero-knowledge remains a hot topic

90's : Maturity years (4)

Asymmetric crypto (alternative)

- Non-traditional (today called Post-Quantum) cryptology emerges
- PKP-based (Shamir)
- Code-based (Niederreiter, Stern)
- Multivariate-based (Patarin, after Matsumoto-Imaï 88)
- Lattice-based encryption scheme (NTRU, Ajtai)
- Other more exotic (Courtois, Pointcheval,...)

90's : Maturity years (5)

New conferences

- General and IACR-sponsored : Asiacrypt (Auscrypt †)
- Specialized and IACR-approved : FSE, PKC, CHES
- Other: ICICS, ISISC, ACISP, ACNS, CTRSA,...

90's : Maturity years (6)

Standardization

- ISO (ANSI)
- IEEE
- IETF
- NIST
- PKCS (RSA), SECG (Certicom)
- EMV (Europay-Mastercard-Visa)

90's are for ECC years of incubation

90's and ECC in brief (1)

Discrete Logarithm problem confirmed as being (apparently) exponential subexponential in one special case DSA's revenge on RSA Research of an analog of RSA essentially failed EC-DSA becomes an "icon" of ECC MQV, an improvement of EC-DH, also.

- Counting points
 - Major improvements of Schoof's algorithm \rightarrow SEA

90's and ECC in brief (2)

Primality

• Major improvements of Goldwasser-Kilian \rightarrow ECPP

Implementation

- Speeding up computations (possibly on special curves)
- Software and hardware realizations (including smart cards)

Standardization

IEEE, FIPS, ANSI, ISO, Certicom...

Discrete logarithm problem (1)

Major result

1993 : Don't use supersingular curves !!!
 (Menezes-Okamoto-Vanstone)

First apparition of pairings in crypto (Weil pairing)

The second will be in 1994 (Tate pairing with an attack by Frey-Rück)

Discrete logarithm problem (2)

1995 : Don't use anomalous curves !!! Semaev, Satoh-Araki, Smart

1998 : Don't use any elliptic curve at all !!! xedni calculus (Silverman) 1999 : April fool !! (Koblitz et al.)

Analog of RSA

1991 : EC over Z/nZ (Koyama-Maurer-Okamoto-Vanstone)

 1993 : Optimisations of RSA-analog (Demytko)

1997 : No clear advantage on RSA itself (Joye)

Analog of DSA

1992: EC-DSA (Vanstone)

1998 : ISO and NIST standards

(later) 2000 : IEEE P1363-a

2002 : Proof of security in the generic model (Brown)

Analog of DH

 Remember : EC-DH was proposed by Miller in 1985

1995 : MQV (Menezes-Qu-Vanstone)

1998 : MQV standardized in IEEE

2005 : HMQV

Point counting

1990 : **GF**(2^m) (Koblitz)

1995: SEA (Schoof-Elkies-Atkin)

works in $O(\log^{4+\epsilon}q)$ after many improvements

 Atkin, Couveignes, Dewaghe, Elkies, Lercier, Morain, Mueller, Schoof,...

1997: GF(2¹⁵⁵) (Lercier, Morain)

CM = Complex Multiplication)

- **1991**: Construction on GF(2^m) (Koblitz)
- 1991 : Construction on GF(p) (Morain)
- 1993 : ECPP (Morain-Atkin)
- **2001 : ECPP record** (Morain) : **907⁶⁹⁴ + 694⁹⁰⁷** (2578 decimal digits)

Implementations

1992: Acceleration of scalar multiplication (Meier-Staffelbach)

1992: Software (Harper-Menezes-Vanstone)

1993: Hardware (Menezes-Vanstone)

 1995 : DH on GF(2¹⁵⁵) in software (Schroeppel-Orman-O'Malley-Spatscheck)

Odds and ends

1992 : 15 curves (including 5 Koblitz curves) standardized by NIST

1997 : first ECC conference in Waterloo

1997-8: Certicom

proposes challenges and prizes

launches Security Builder Crypto, first commercial product based on ECC

starts own standardization with SECG

Personal feeling

At this time (1999), my feeling is that

- RSA or DH key length will not by itself pose a problem for long
- Signature production time *might* pose a problem, but which can be solved with ZK schemes (Fiat-Shamir, GQ, Schnorr)
- Alternative crypto is seriously growing
- As a consequence, ECC could be the **wasted generation...**

4. The pairing **tornado** (2000 - 2009)

(Sorry : no time for summarizing 2000's for cryptology in general)

Joux's time bomb

2000 : Three-party Diffie-Hellman key agreement

thanks to Weil pairing

 $e(aP,bP)^{c} = e(bP,cP)^{a} = e(cP,aP)^{b} = e(P,P)^{abc}$

(see also earlier work by Sahai et al.)

Then Boneh et al.

2001 : Identity-based encryption (Boneh-Franklin)

2001 : Short signatures (Boneh-Lynn-Sacham)

 2004 : Short group signatures (Boneh-Boyen)

Followed by incredibly many other schemes

see Tanja Lange's survey at Asiacrypt 2005

Cryptology fully revisited but...(1)

 Theoretical hardness of underlying problems is questionable

Many strange assumptions

Cryptology fully revisited but... (2)

Practical feasibility of pairings is questionable

See Gouvea & Lopez' paper this morning

Cryptology fully revisited but... (3)

- Is identity-based cryptography useful at all ?
 - (apparently) flexible from user's viewpoint
 - (actually) horrible from key distribution viewpoint

Discrete log problem

No theoretical breakthrough

ECC2p-109 broken in 2002 and ECC2-109 in 2004 (Monico et al.)

Next : ECC2K-130

- Believed by european E-Crypt II partners to be breakable in one year
- see Dan Bernstein's invited talk tomorrow

Suitable curves/forms (1)

 Another hot topic of 2000's is to find suitables curves and/or representations for

- accelerating computation
- or countering side-channel attacks
- or both

To achieve the second goal, unified addition laws are attractive (remember Montgomery's one in 1987)

Suitable curves/forms (2)

Have been particularly analysed during 2000's

- Weierstrass form (Brier-Joye)
- Jacobi form (Liardet-Smart)
- Hessian form (Joye-Quisquater)
- Edwards curves (Bernstein-Lange)
- MNT curves (Miyaji-Nakabayashi-Takano)
- BN curves (Barretto-Naehrig)
 - etc.

Odds and ends

- Counting points
 - new "p-adic" methods initiated by Satoh in 2000 and Mestre in 2001

Allow to count points of a curve on GF(2¹⁵⁵) in less than one second (Lercier-Lubicz)

 HECC : don't use genus more than three (Gaudry)

and last but not least Support of ECC by NSA (so-called suite B)

And what about primality ?

PRIMES is in P (of course !)

Agraval-Kayal-Saxena 2002 (but this has nothing to do with elliptic curves)

5. Applications

DRM

Microsoft

Windows Media Player 2009

AppleFair play (in progress)

 MARLIN standard (Open Source, supported by Sony, Toshiba, Samsung, Hitachi, Panasonic,...)

Liquidplay

Blackberry (ECC 256, near to RSA and DH-3072)

Bought Certicom this year

Smart cards and RFID

ECC implemented in many smart cards

- Electronic passports (tags with cryptoprocessors)
 - ECC in option (along with RSA)
 - Germany opted for ECC

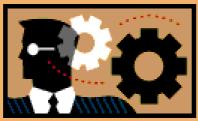
Lightweight (without microprocessors) ≈10000 GE's (not so bad)

6. Two experts' opinions

For the past 5 years or more there have been **no significant new results** on the elliptic curve discrete logarithm problem (ECDLP). There are at least two possible interpretations of this fact :


1) Everyone has been working on pairing-based cryptography and has stopped looking at the ECDLP.

2) Research progress on the ECDLP has **stabilised**, in much the same way that progress on factoring has been stable for the last 15 or more years. This interpretation suggests that the ECDLP is indeed a hard computational problem.



In any case, the lack of any significant progress on the ECDLP in recent years further supports my opinion that elliptic curve cryptosystems are a secure choice for public key cryptography

Today, all is ready for switching from RSA to ECC. Only missing is the « spark » which will push the industrials to move. In France, the Agency for Security of Information Systems encourages the industrials to use ECC.

Ludovic Flament (transl. M. Girault)

ECC sounds « modern » and becomes more and more familiar out of the cryptographic community. I think that the transition will occur within five years.

Ludovic Flament (transl. M. Girault)

7. Conclusion (?)

Considering that

- At the eve of its 25-year birthday, ECC is now (theoretically and practically) very mature
- ECC is supported by several national agencies
- ECC has already interfered in several key products, applications or standards
- ECC is on the starting-blocks, ready for invasion
- PQ crypto seems to mark time
 - Quantum computers still are long-term technology

I undersigned Marc Girault

- Declare to be in possession of my mental faculties
- Request authorization of (partially) reversing my past opinion
- Am today (15th of December 2009) inclined to believe that

Nonetheless

Since doubt survives, let me kindly suggest the program committee to invite me again at

INDOCRYT

2034

Special credits and/or thanks to

- L. Flament
- S. Galbraith
- M. Joye
- F. Laguillaumie
- R. Lercier
- F. Morain
- N. Sendrier